Что такое коррозия металлов в химии. Химические свойства металлов

При взаимодействии металлов с веществами окружающей среды на их поверхности образуются соединения, обладающие совершенно иными свойствами, чем сами металлы. В обычной жизни мы часто повторяем слова «ржавчина››, «ржавление», видя коричнево-желтый налет на изделиях из железа и его сплавах.

Ржавление - это частный случаи коррозии.

Коррозия - это процесс самопроизвольного разрушения металлов под влиянием внешней среды.

Однако разрушению подвергаются практически все металлы, в результате чего многие их свойства ухудшаются (или совсем теряются): уменьшаются прочность, пластичность, блеск, снижается электропроводность, а также возрастает трение между движущимися деталями машин, изменяются размеры деталей и т. д.

По своей химической природе коррозия - это окислительно-восстановительный процесс. В зависимости от среды, в которой он протекает, различают два вида коррозии.

Виды коррозии

1. Химическая коррозия – это разрушение металла в результате химического взаимодействия с окружающей средой. Она характерна для сред, не проводящих электрический ток. По условиям протекания коррозионного процесса различают:

а) газовую коррозию – взаимодействие металла при высоких температурах с активным газообразными средами O 2 , H 2 S, SO 2 , галогены и др.;

3Fe + 2O 2 Fe 3 O 4
4Al + 3O 2 2Al 2 O 3

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные пленки. Если эта пленка прочная, плотная, хорошо связана с металлом, то она защищает металл от дальнейшего разрушения. Такие защитные пленки появляются у Zn, AI, Сг, Ni, Sn, Pb, Nb, Та и др. У железа она рыхлая, пористая, легко отделяется от поверхности и потому не способна защитить металл от дальнейшего разрушения.

б) коррозия в неэлектролитах – агрессивных органических жидкостях, таких, как нефть, нефтепродукты и др. Химическая коррозия встречается сравнительно редко и скорость ее невелика.

2. Электрохимическая коррозия

– это разрушение металла под действием окружающей среды в результате возникновения гальванических пар. Множество микрогальванических пар возникает при контакте различных металлов в среде любого электролита, при наличии примесей в металле, при контакте металла с раствором электролита с различной концентрацией в разных точках раствора, при неоднородных механических напряжениях металла.

При электрохимической коррозии процесс взаимодействия металла с окислителем окружающей среды включает два взаимосвязанных процесса:

а) анодное окисление более активного металла:

Me 0 – n e - Me n +

б) катодное восстановление окислителя окружающей среды:

В кислой среде на поверхности катода будут восстанавливаться ионы Н+ и выделяться водород:

2Н + + 2 e - Н 2

В нейтральной и щелочной средах на поверхности катода будет восстанавливаться молекулярный кислород с образованием гидроксид-ионов:

О 2 + 2Н 2 О + 4 e - 4ОН -

Кроме анодных и катодных реакций при электрохимической коррозии происходит длвижение электронов в металле с анодных участков на катодные и движение ионов в электролите. Электролитами могут быть растворы солей, кислот и оснований, морская вода, почвенная вода, вода атмосферы, содержащая CO 2 , SO 2 , O 2 и другие газы.

Для защиты металлов от коррозии используют различные методы:

1) защитные покрытия (металлические и неметаллические);

2) электрохимическую защиту;

3) легирование металлов;

4) изменение свойств коррозионной среды.

Для защиты железа от коррозии используются всевозможные покрытия: краска, слой металла (олова, цинка). При этом краска и олово предохраняют от коррозии до тех пор, пока защитный слой цел. Появление в нем трещин и царапин способствует проникновению влаги и воздуха к поверхности железа, и процесс коррозии возобновляется, причем в случае оловянного покрытия он даже ускоряется, поскольку олово служит катодом в электрохимическом процессе.

Оцинкованное железо ведет себя иначе. Поскольку цинк выполняет роль анода, то его защитная функция сохраняется и при нарушении цинкового покрытия. Катодная защита широко используется для уменьшения коррозии подземных и подводных трубопроводов и стальных опор высоковольтных передач, нефтяных платформ и причалов.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества

При взаимодействии металлов с веществами окружающей среды на их поверхности образуются соединения, обладающие совершенно иными свойствами, чем сами металлы. В обычной жизни мы часто повторяем слова «ржавчина››, «ржавление», видя коричнево-желтый налет на изделиях из железа и его сплавах.
Ржавление — это частный случаи коррозии.
Коррозия — это процесс самопроизвольного разрушения металлов под влиянием внешней среды.
Однако разрушению подвергаются практически все металлы, в результате чего многие их свойства ухудшаются (или совсем теряются): уменьшаются прочность, пластичность, блеск, снижается электропроводность, а также возрастает трение между движущимися деталями машин, изменяются размеры деталей и т. д.
По своей химической природе коррозия — это окислительно-восстановительный процесс. В зависимости от среды, в которой он протекает, различают два вида коррозии.

Виды коррозии

1. Химическая коррозия происходит в не проводящей электрический ток среде.
Такой вид коррозии проявляется в случае взаимодеиствия металлов с сухими газами или жидкостями-неэлектролитами (бензином, керосином и др.). Такому разрушению подвергаются детали и узлы двигателей, газовых турбин, ракетных установок. Химическая коррозия часто наблюдается в процессе обработки металлов при высоких температурах.

3 Fe + 2O 2 = Fe 3 O 4
4 Al + 3O 2 = 2Al 2 O 3

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные пленки. Если эта пленка прочная, плотная, хорошо связана с металлом, то она защищает металл от дальнейшего разрушения. Такие защитные пленки появляются у Zn, AI, Сг, Ni, Sn, Pb, Nb, Та и др. У железа она рыхлая, пористая, легко отделяется от поверхности и потому не способна защитить металл от дальнейшего разрушения.

II. Электрохимическая коррозия происходит в токопроводящей среде (в электролите) с возникновением внутри системы электрического тока. Электрохимической коррозии подвергаются подводные части судов, паровые котлы, подземные трубопроводы, металлические конструкции, находящиеся во влажном воздухе. Как правило, металлы и сплавы неоднородны, содержат включения различных примесей. При контакте их с электролитами одни участки поверхности начинают выполнять роль анода (отдают электроны), а другие - роль катода (принимают электроны).

Для защиты железа от коррозии используются всевозможные покрытия: краска, слой металла (олова, цинка). При этом краска и олово предохраняют от коррозии до тех пор, пока защитный слой цел. Появление в нем трещин и царапин способствует проникновению влаги и воздуха к поверхности железа, и процесс коррозии возобновляется, причем в случае оловянного покрытия он даже ускоряется, поскольку олово служит катодом в электрохимическом процессе.
Оцинкованное железо ведет себя иначе. Поскольку цинк выполняет роль анода, то его защитная функция сохраняется и при нарушении цинкового покрытия. Катодная защита широко используется для уменьшения коррозии подземных и подводных трубопроводов и стальных опор высоковольтных передач, нефтяных платформ и причалов.

1 тема «Общие свойства металлов» (2 часа)

Урок 2 .

ТЕМА УРОКА:

Химические свойства металлов. Понятие о коррозии металлов и способах защиты от неё (обзорно) Повторение и обобщение знаний.

НРК. «Способы борьбы с коррозией – защитные покрытия другими металлами и добавки с целью получения нержавеющих сплавов»

Место урока в теме: 2 урок

Тип урока: изучение нового материала с использованием презентаций.

Вид урока: комбинированный.

Цели урока:

· Обеспечить восприятие и осмысление учащимися основных понятий темы «металл как элемент» и «металл как простое вещество».

· Подвести учащихся к осознанию химических свойств металлов и реакций, лежащих в их основе.

· Совершенствовать знания учащихся о металлах, их соединениях, свойствах;

· Создать условия для развития умения осознанно работать с источниками информации и с химическими терминами.

Задачи:

Обучающая:

· Обобщить знания учащихся, полученные ранее, при рассмотрении общих химических свойств металлов.

· Повторить особенности протекания реакций металлов с растворами электролитов.

· Развивать логическое мышление при обобщении знаний и конкретизации общих свойств металлов для отдельных представителей этого класса простых веществ.

· Опираясь на ранее полученные знания учащихся, подвести их к пониманию различий в представлениях о металлах как химических элементах и металлах как простых веществах.

· Продолжить отработку умений и навыков в составлении уравнений, электронных балансов в окислительно-восстановительных реакциях, умений сопоставлять, анализировать и делать выводы.


· создать условия для получения учащимися знаний химических свойств металлов и реакций, лежащих в их основе;

· объяснить явление коррозии металлов, выяснить, что такое коррозия, её виды, механизм (на примере коррозии железа), способы защиты от коррозии.

развивающая:

· способствовать развитию у учащихся логического мышления, умения анализировать и сравнивать, работать с дополнительной информацией при выполнении сообщений.

воспитывающая:

· формировать интерес к предмету через мультимедийные возможности компьютера.

· содействовать формированию представлений о причинно-следственных связях и отношениях,

· вырабатывать стремление к коллективизму ;

· формировать мировоззренческое понятие о познаваемости природы.

Планируемые результаты обучения:

Знать:

· Химические свойства металлов.

· Определение коррозии металлов, её виды и способы защиты от неё.

· Условия, способствующие и препятствующие коррозии.

Уметь:

· доказывать химические свойства металлов: записывать уравнения химических реакций в молекулярном и окислительно-восстановительном виде.

· Объяснять сущность химической и электрохимической коррозии.

Средства обучения:

· Компьютер,

· мультимедийное сопровождение,

· Периодическая система химических элементов.

Презентации на тему «Химические свойства металлов»

«Коррозия металлов»

Ход урока: I . Вводная часть. Организационный момент.

1. Приветствие учащихся.

2. Определение отсутствующих на уроке.

3. Проверка готовности к началу урока.

4. Организация внимания, постановка цели урока.

II . Актуализация и проверка знаний.

1 ФРОНТАЛЬНАЯ БЕСЕДА.

Вопросы и задания для работы учащихся:

· Где расположены металлы в ПС химических элементов?

· Что общего имеется в строении атомов всех металлов?

· Каковы окислительно-восстановительные свойства металлов?

· Что такое металлическая связь?

· Что такое металлические кристаллические решетки?

· В каком виде встречаются в природе? Почему большинство металлов встречаются в виде соединений?

· В чем особенность физических свойств? По возможности это объяснить.

· Электропроводность, теплопроводность (объясняется наличием в металлических решетках свободных электронов, способных легко перемещаться);

· Ковкость, пластичность металлов (способность так называемого «электронного газа», то есть свободных электронов связывать любые конфигурации атомов металлов)

· Хрупкость металлов (на примере хрома и марганца)

При этом идет окислительно-восстановительная реакция, в ходе которой металл окисляется, а присутствующий в среде окислитель восстанавливается, электроны переходят от металла к окислителю непосредственно без возникновения в цепи электрического тока.

Демонстрация: Например, прокалим медную проволоку на воздухе. Что наблюдаете? (предполагаемый ответ: наблюдаем изменение окраски – появление черного налета, значит, прошла химическая реакция).

При взаимодействии меди с кислородом идет реакция:

u + О2=2 С u О (запись в тетради и на доске, у доски работает вызванный ученик)

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидную пленку. Если эта пленка плотная, хорошо связана с поверхностью, то она защищает металл от дальнейшего разрушения. Например, при коррозии алюминия в кислороде идет реакция:

4Al + 3O2 = 2Al2О3. (запись в тетради и на доске)

Оксидная пленка плотно прилегает к поверхности металла, и нет дальнейшего допуска кислорода к металлу. Можно сказать, что для алюминия такое покрытие благоприятно, так как дальнейшего разрушения не происходит. Плотная оксидная пленка у цинка, никеля, хрома, олова, свинца и др.

В случае химической коррозии железа идет реакция:

3 Fe + 2О2= Fe 3 О4 ( FeO Fe 2 О3)

Оксидная пленка железа очень рыхлая (вспомните какой-либо ржавый предмет – как только вы берете его в руки, остаются следы ржавчины) и не прилегает плотно к поверхности металла, поэтому кислород проникает все дальше и дальше, коррозия идет до полного разрушения предмета.

Электрохимическая коррозия. (запись в тетради) (Слайд 7)

Этот вид коррозии распространен гораздо шире, ей подвергаются паровые котлы, подводные части судов, металлические сооружения и конструкции под водой и в атмосфере, проложенные в грунте трубопроводы, оболочки кабелей и т. д.

При электрохимической коррозии возникает электрическая цепь. Подвергаться коррозии может как один металл, так и металлы в контакте друг с другом. Рассмотрим, что происходит, если цинк положить в разбавленный раствор соляной кислоты (демонстрация опыта) Вопрос к классу:

«Что наблюдаете?» (Ответ: цинк реагирует с кислотой, при этом выделяется газ)

В кислой среде цинк отдает 2 электрона. При этом окисляется и переходит в раствор в виде ионов:

Zn – 2 e - = Zn 2+ (запись на доске и в тетради)

Катионы водорода восстанавливаются, образуется газ – водород:

2 Н+ + 2 е - = Н2 (запись на доске и в тетради)

Уравнение реакции в ионном виде:

Zn + 2 Н+ = Н2 + Zn 2+ (запись на доске и в тетради)

Замечено, что сверхчистые металлы устойчивы к коррозии. Например, сверхчистое железо намного меньше корродирует по сравнению с обычным железом. Знаменитая Кутубская колонна в Индии близ Дели уже почти полторы тысячи лет стоит и не разрушается, несмотря на жаркий и влажный климат. Сделана она из железа, в котором почти нет примесей. Как удалось древним металлургам получить такой чистый металл, до сих пор остается загадкой.

СПОСОБЫ ЗАЩИТЫ ОТ КОРРОЗИИ.

· Протекторная защита

· Защита менее активным металлом

· Пассивация

· Электрозащита

· Создание сплавов, стойких к коррозии

· Добавление ингибиторов

· Различные покрытия.

СООБЩЕНИЕ УЧАЩИХСЯ. НРК.

1. «Способы борьбы с коррозией – защитные покрытия другими металлами и добавки с целью получения нержавеющих сплавов»

2. «Современные достижения в области создания новых сплавов, их применении в различных отраслях промышленности и хозяйства»

МАТЕРИАЛ ДЛЯ СООБЩЕНИЙ.

Сообщение 1. Протекторная защита. Металл, который необходимо защитить от коррозии покрывают более активным металлом. Тот металл, который заведомо будет разрушаться в паре, называется протектором. Примеры такой защиты – оцинкованное железо (железо – катод, цинк – анод), контакт магния и железа (магний – протектор).

Железо часто покрывают другим металлом, например цинком или хромом, чтобы защитить от коррозии. (Слайд 10, а также таблица «Методы защиты от коррозии).

Оцинкованное железо получают, покрывая его тонким слоем цинка. Цинк защищает железо от коррозии даже после нарушения целостности покрытия. В этом случае железо в процессе коррозии играет роль катода, потому что цинк окисляется легче железа:

Zn -2е- = Zn 2+ (запись на доске и в тетради)

На защищаемом железе идут процессы:

2 H + + 2 e - = H 2 (в кислой среде)

или

O 2 + 2 H 2 О + 4 e - = 4 OH - (в нейтральной среде)

Zn 2+ + 2 ОН- = Zn (ОН)2 (запись на доске и в тетради)

Магниевый анод окружают смесью гипса, сульфата натрия и глины, чтобы обеспечить проводимость ионов. Труба играет роль катода в гальваническом элементе (рис. 5. Защита железных водопроводных труб).

Сообщение 2. Защита металла менее активным металлом . Так называемую «белую жесть» получают, покрывая тонким слоем олова листовое железо. Олово защищает железо до тех пор, пока защитный слой остается неповрежденным. Стоит его повредить, как на железо начинают воздействовать воздух и влага, олово даже ускоряет процесс коррозии, потому что служит катодом в электрохимическом процессе.

Поэтому железо служит в этом случае анодом и окисляется.

Электрозащита. Конструкция, находящаяся в среде электролита, соединяется с другим металлом (обычно куском железа, рельсом и т. п.), но через внешний источник тока. При этом защищаемую конструкцию подключают к катоду, а металл – к аноду источника тока. В этом случае электроны отнимаются от анода источником тока, анод (защищающий металл) разрушается, а на катоде происходит восстановление окислителя. Электрозащита имеет преимущество перед протекторной защитой: радиус действия первой около 2000 м, второй 50

Сообщение 3. Создание сплавов, устойчивых к коррозии . Если металл, например хром, создает плотную оксидную пленку, его добавляют в железо, и образуется сплав – нержавеющая сталь. Такие стали называются легированными. Большим достижением металлургов в защите от коррозии стало создание коррозионно-стойкой стали. В результате снижения содержания углерода в нержавеющей стали до 0,1 % стало возможным изготовлять из нее листовой прокат. Типичная «нержавейка» содержит 18% хрома и 8% никеля. Первые тонны нержавеющей стали в нашей стране выплавили еще в 1924 г. в Златоусте. Сейчас создан широкий ассортимент сталей, устойчивых к коррозии. Это и сплавы на железохромоникелевой основе, и особо коррозионностойкие никелевые, легированные молибденом и вольфрамом. Эти сплавы производят и на нашем комбинате.

Многие сплавы, которые содержат незначительное количество добавок дорогих и редких металлов, приобретают замечательную устойчивость к коррозии и прекрасные механические свойства. Например, добавки родия или иридия к платине так сильно повышают ее твердость, что изделия из нее – лабораторная посуда, детали машин для получения стекловолокна – становятся практически вечными.

Сообщение 4 Пассивация металла . Пассивация – это образование на поверхности металла плотно прилегающего оксидного слоя, защищающего от коррозии. Поверхность металла обрабатывают так, чтобы образовалась тонкая и плотная пленка оксида, которая препятствует разрушению основного вещества. Например, концентрированную серную кислоту можно перевозить в стальных цистернах, т. к. она образует на поверхности металла тонкую, но очень прочную пленку. Пассивация вызывается и другими сильными окислителями. Например, хранение лезвий безопасных бритв в растворе хромата калия позволяет дольше сохранить их острыми. В ином случае, пол действием влажного воздуха, железо окисляется и его поверхность ржавеет.

V . Закрепление нового материала. Подведение итогов. Рефлексия.

Упражнение 10. стр. 112 учебника устно.

Выставление оценок.

ВЫВОД.

VI . Домашнее задание.

§ 37, записи в тетради. Повторить § 36. Обобщить материал по теме «Общие свойства металлов»

Подготовка к следующему уроку.

1 группа: «Щелочные металлы»

2 группа: «Щелочно-земельные металлы»

3 группа: «Металлы III A группы»

Коррозией обычно называют самопроизвольное разрушение металлов в результате их химического и электрохимического взаимодействия с внешней средой и преобразование их в устойчивые соединения (оксиды, гидроксиды, соли).

Собственно говоря, коррозия представляет собой совокупность окислительно-восстановительных процессов, которые происходящие при контакте металлов с агрессивной средой, что приводит к разрушение металлических изделий. Под агрессивной средой имеют в виду окисную атмосферу (присутствие кислорода в атмосфере Земли делает ее окисной), особенно в присутствии воды или растворов электролитов.

По механизму процесса различают химическую и электрохимическую коррозию металлов. Химическая коррозия представляет собой обычную химическую реакцию между атомами металлов и различных окислителей. Примерами химической коррозии является высокотемпературное окисление металлов кислородом, окисления поверхности алюминия на воздухе, взаимодействие металлов с хлором, серой, сероводородом H 2 S и др.

Электрохимическая коррозия протекает в растворах, то есть, в основном, при контакте металлов с растворами электролитов, особенно в тех случаях, когда металлы находятся в контакте с менее активными металлами. Скорость коррозии существенно зависит от активности металлов, а также от концентрации и природы примесей в воде. В чистой воде металлы почти не подвергаются коррозии, а в контакте с более активными металлами даже в растворах электролитов не коррозируют.

Причина коррозии металлов

Много металлов, включая Железо, находятся в земной коре в виде оксидов. Переход от металла до оксида - энергетически выгодный процесс, иначе говоря, оксиды более устойчивые соединения, чем металлы. Для того чтобы провести обратный процесс и добыть металл из руды, необходимо затратить много энергии, поэтому железо проявляет тенденцию превращаться снова в оксид - как говорят, железо ржавеет. Ржавление - это термин для обозначения коррозии, то есть процесса окисления металлов под действием окружающей среды.

Круговорот металлов в природе можно изобразить с помощью следующей схемы:

Металлические изделия ржавеют том, что сталь, из которой они сделаны, реагирует с кислородом и водой, которые содержатся в атмосфере. При коррозии железа или стали образуются гидратированные формы ферум(ІІІ) оксида различного состава (Fe 2 О 3 ∙ хН 2 О). Оксид проницаемый для воздуха и воды и не образует защитного слоя на поверхности металла. Поэтому коррозия металла продолжается и под слоем ржавчины, которая образовалась.

Когда металлы контактируют с влажным воздухом, они всегда подлежат коррозии, однако на скорость ржавления влияет очень много факторов. Среди них можно назвать такие: наличие примесей в металле; присутствие кислот или других электролитов в растворах, что соприкасаются с поверхностью железа; кислород, который содержится в этих растворах.

Механизм электрохимической коррозии металлической поверхности

В большинстве случаев коррозия представляет собой электрохимический процесс. На поверхности металла образуются электрохимические ячейки, в которых различные участки действуют как области окисления и области восстановления.

Ниже приведены две напівреакції окислительно-восстановительного процесса ржавления:

Суммарное уравнение реакции коррозии железа можно записать так:

Схематично процессы, которые происходят на поверхности железа или стали при контакте с водой, можно представить так:

Концентрация кислорода, растворенного в капле воды, определяет то, какие области на поверхности металла есть местом восстановления, а какие - местом окисления.

По краям капли, где концентрация растворенного кислорода выше, кислород восстанавливается до гидроксид-ионов.

Необходимые для восстановления кислорода электроны перемещаются из центра капли, где они высвобождаются при окислении Железа и где концентрация растворенного кислорода мала. Ионы Железа переходят в раствор. Освобождающиеся электроны по поверхности металла перемещаются к краям капли.

Сказанное выше объясняет, почему коррозия в наибольшей степени проявляется в центре капли воды или под слоем краски: это области, в которые поступление кислорода ограничено. Здесь образуются так называемые «раковины», в которых Железо переходит в раствор.

Ржавчина как таковая возникает в результате последовательности вторичных процессов в растворе, куда диффундируют с поверхности металла ионы Железа и гидроксид-ионы. Защитный слой на поверхности не образуется.

Активность протекание реакции восстановления Кислорода зависит от кислотности среды, поэтому в кислой среде коррозия ускоряется. Любые примісні соли, например, натрий хлорид в брызгах морской воды, способствуют образованию ржавчины, поскольку увеличивают электропроводность воды.

Возможно, проблему коррозии никогда не удастся решить полностью, и больше всего, на что можно рассчитывать,- это замедлить, но не остановить.

Методы защиты от коррозии

На сегодня существует несколько способов предотвращения коррозии.

Отделение металла от агрессивной среды - покраска, смазка маслами, покрытие неактивными металлами или эмалью (И), Приведение поверхности металлов в контакт с более активными металлами (II). Использование веществ, замедляющих коррозию (ингибиторы коррозии), и сплавов, устойчивых к коррозии (III).

I.самый Простой способ защитить сталь от коррозии - это изолировать металл от атмосферного воздуха. Это можно сделать с помощью масляного, жирового смазки или нанесения защитного слоя краски.

Сейчас широко применяют защитные покрытия из органических полимеров. Покрытие можно делать разных цветов, и это достаточно гибкое решение проблемы коррозии. Даже беглый взгляд на вещи, которые окружают нас в быту, дает массу примеров такого решение: холодильник, сушилка для посуды, поднос, велосипед и т.д.

II. Иногда железо покрывают тонким слоем другого металла. Некоторые производители изготавливают кузова автомобилей из стали с гальваническим цинковым покрытием. При такой обработке образуется прочно сцепленный с основой слой цинк оксида, и если гальваническое покрытие не повреждено, оно хорошо защищает от иржи.

Даже если такое покрытие имеет недостатки, стальной корпус машины все же защищен от быстрого разрушения, потому что в этой системе преимущественно корродирует цинк, а не железо, поскольку цинк более активный металл, чем железо. В данном случае цинк приносят в жертву. Одна из самых первых предложений относительно использования протекторных («жертвенных») металлов была сделана в 1824 году для защиты от коррозии металлической обшивки корпусов морских лодок.

Сегодня цинковые блоки используют для защиты от коррозии нефтедобывающих платформ в морях: коррозия из дорогих сложных стальных конструкций переводится на куски металла, которые легко заменить. В чем же заключается принцип такой защиты? Проиллюстрируем его с помощью схемы.

Через определенные промежутки вдоль всей опоры, что находится в море, прикрепленные цинковые блоки. Поскольку цинк более активен, чем железо (расположен левее в электрохимическом ряду напряжений), то преимущественно окисляется цинк, а железная поверхность преимущественно остается нетронутой. В принципе, любой металл, расположенный левее железа в электрохимическом ряду напряжений, может быть использован для защиты стальных изделий.

Аналогичный принцип используют для защиты железобетонных конструкций жилых домов, в которых все железные прутья соединены друг с другом и соединяются с куском магния, зарытым в землю.

III. Очень распространенным решением проблемы защиты от коррозии является использование іржостійких сплавов. Многие со стальных изделий, используемых в быту, особенно те, что находятся в постоянном контакте с водой: кухонная посуда, ложки, вилки, ножи, бак стиральной машины и т.д. - изготовлены из нержавеющей стали, которая не требует дополнительной защиты.

Іржостійку сталь изобрел в 1913 году химик из Шеффилда Гарри Бріарлі. Он исследовал быстрый износ нарезки оружейных стволов и решил попробовать сталь с высоким содержанием хрома, чтобы посмотреть, нельзя в такой способ продолжить жизнь оружия.

Обычно при проведении анализа стали образец растворяли в кислоте. Бріарлі, проводя такой анализ, столкнулся с неожиданными трудностями. Его сталь, с высоким содержанием хрома, не растворялась. Он также заметил, что оставленные в лаборатории образцы сохраняли первоначальный блеск. Бріарлі сразу же сообразил, что он изобрел сталь, устойчивую к коррозии.

Изобретение Гарри Бріарлі наткнулся на некоторые предрассудки. Один из главных производителей металлической посуды в Шеффилде считал саму идею Бріарлі такой, «что противоречит природе», а другой заявил, что «устойчивость к коррозии - не такое уж и большое достоинство ножей, которые по своему назначению требуют чистки после каждого использования». Сегодня мы воспринимаем как должное то, что посуда сохраняет свой блеск и не подвергается воздействию кислот, содержащихся в пище.

Нержав. сталь не поддается коррозии потому, что на ее поверхности образуется пленка хром(III) оксида. В отличие от ржавчины, на этот оксид не действует вода, и он крепко сцепленный с металлической поверхностью. Имея толщину всего несколько нанометров, оксидная пленка невидимая для невооруженного глаза и не скрывает естественный блеск металла. При этом она непроницаема для воздуха и воды и защищает металл. Больше того, если соскоблить поверхностную пленку, она быстро восстановится.

На сожалению, нержавеющая сталь дорога, и мы вынуждены учитывать это при выборе стали для использование. В современной технике чаще всего используют іржостійку сталь такого состава: 74% железа, 18% хрома, 8% никеля.

Поскольку использование нержавеющей стали не всегда экономически оправдано, как и использование защитных слоев смазок и красок, то сегодня довольно часто используют покрытия железных изделий тонким слоем цинка (оцинкованное железо) или олова (луджене железо). Последнее очень часто используют при изготовлении консервов.

Метод защиты консервов покрытием внутренней металлической поверхности оловом предложил англичанин Питер Дюранд. С такой защитой консервы протяжении длительного времени остаются пригодными для еды. К сожалению, производство продуктовых консервов и напитков не лишено трудностей. Различные продукты создают внутри банки разное среда, которая по-разному действует на металл и может вызвать коррозию.

На начале XX века стали выпускать баночное пиво. Однако новый продукт не имел молниеносного успеха, и причиной этого было то, что банки кородували изнутри. Тонкий слой олова, что им покрывали банки, очень редко выходил сплошным. Чаще всего он имел незначительные изъяны. В водном растворе железо окисляется быстрее, чем олово (за более высокую активность). Ионы Железа Fe 2+ растворялись в пиве (которое в целом является неплохим средством от анемии) и придавали напитку привкус металла, а кроме того, уменьшали его прозрачность. Это снижало популярность баночного пива. Впрочем, производителям удалось преодолеть эту проблему после того, как они стали покрывать внутренность банок специальным инертным органическим лаком.

В банках с консервированными фруктами являются органические кислоты, например лимонная кислота. В растворе эти кислоты способствуют связыванию ионов Олова Sn 2+ и тем самым увеличивают скорость растворения оловянного покрытия, поэтому в консервированных фруктах (персики и т.д.) преимущественно олово корродирует. Ионы Олова, которые попадают таким образом в пищу, нетоксичные. Они не изменяют существенно вкусовые качества консервированных фруктов, разве что предоставляют им островатого привкуса. Однако если такую банку хранить слишком долго, могут возникнуть проблемы. Тонкий слой олова, который окисляется, в конце концов разрушится под влиянием органических кислот начнет довольно быстро коррозировать железный слой.


Company Logo Актуализация знаний и мотивация учебной деятельности Химический диктант по 2-м вариантам (нечётные номера – 1 вариант, чётные – 2 вариант) 1. Способность металлов хорошо проводить электрический ток объясняется наличием.. 2. Металлы имею … строение 3. От строения кристаллической решётки метал- ла зависят его… 4. Температура плавления металла зависит от… 5. Самый лёгкий металл… 6. Самый тяжёлый металл…


Company Logo Актуализация знаний и мотивация учебной деятельности 7.Металлы, плавящиеся при темп. ниже С называются… 8. Металлы с плотностью меньше 5 г/см 3 называются… 9. Темп. плавления тугоплавких металлов … 10. С повышением темп. плавления уменьшается… 11.Металлы, отдавая электроны, выполняют роль … 12. К чёрным металлам относятся…


Company Logo Актуализация знаний и мотивация учебной деятельности 13. Металлы в технике подразделяются по… 14. Самым тугоплавким металлом является… Мотивация: в древности людям было известно 7 металлов. Их число соотносилось Числу известных тогда планет: Сатурн-свинец, Меркурий-ртуть, Марс-железо, Луна-серебро, Солнце-золото, Венера-медь, Юпитер-олово. Вы знаете намного больше алхимиков и мы сегодня продолжим изучать свойства металлов


Company Logo Металлы 1. Что объединяет эти элементы? 2. Какие свойства этих элементов вам известны?


Company Logo Химические свойства металлов Какие свойства простых веществ изображены на этом слайде?


Company Logo Химические свойства металлов Какие элементы относятся к металлам? Назовите основное свойство металлов Как изменяется активность металлов в периоде? Элементы, на внешнем уровне у которых 1-2 электрона. Основное свойство - отдавать валентные электроны С увеличением заряда ядра активность металла в периоде уменьшается


Company Logo Ряд активности металлов Увеличение восстановительных свойств Рассмотрите ряд активности металлов, сделайте вывод об активности различных металлов, выскажите предположение с какими веществами они могут реагировать.


Company Logo Химические свойства металлов Взаимодействие с неметаллами: с кислородом с серой с галогенами Li K Ca Na Mg Al Zn Cr Fe Ni Pb Cu Hg Ag Pt Au При обычных условиях M + О2 оксид Медленно или при нагревании M + O 2 оксид M + O 2


Company Logo Химические свойства металлов Напишите уравнения реакций взаимодействия натрия с: кислородом, серой, хлором 4Na + O2 = 2Na2O 2Na + S = Na2S 2 Na + CI2 = 2NaCI


Company Logo Взаимодействие со сложными веществами: с водой Li K Ca NaMg Al Zn Cr Fe Ni Pb (H 2) Cu Hg Ag Pt Au При обычных условиях M + H 2 O H 2 + щёлочь При нагревании M+H 2 OH 2 +оксид M + H 2 O


Company Logo Примеры Закончите возможные уравнения реакций: 1. Li + H2O = 2. AI + H2O = 3. Hg + H2O = 2Li + 2HOH = 2LiOH + H2 2AI +3H2O = Ai2O3 + 3H2 Hg + H2O


Company Logo Взаимодействие с растворами кислот Li K Ca Na Mg Al |Zn Cr Fe Ni Pb (H 2) Cu Hg Ag Pt Au Вытесняют H 2 из растворов кислот Не вытесняют H 2 из растворов кислот


Company Logo Примеры Напишите возможные уравнения реакций взаимодействия с разбавленной серной кислотой: алюминия, цинка, натрия и меди 3H2SO4 + 2AI= AI2(SO4)3+ 3H2 H2SO4 + Zn = ZnSO4 + H2 H2SO4 + 2Na = Na2SO4 + H2 H2SO4 + Cu


Company Logo Взаимодействие с растворами солей Каждый металл вытесняет из растворов солей другие металлы, находящиеся правее него в ряду напряжений, и сам может быть вытеснен металлами, расположенными левее. Fe + CuSO4 = FeSO4 + Cu Zn + NiCI2 = ZnCI2 + Ni Запомнить! Нельзя для этой цели брать активные металлы, так как они взаимодействую с водой, образуя щёлочи.


Company Logo Реагирующи е вещества KCaFeCuAu О2 Н2О HCl (раствор) Pb(NO3)2 раствор Упражнения


Company Logo Проверка Реагирующие вещества NaCaFeCuAu О2О Н2ОН2О HCl (раствор) Pb(NO 3) 2 раствор +++--


Company Logo Коррозия Коррозия – это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.


Company Logo Причины коррозии А) газы (O2,SO2, H2S, Cl2, NH3, NO, NO2, H2O-пар и т.д.); сажа – адсорбент газов; Б) электролиты: щёлочи, кислоты, соли; В) ионы Сl-, влажность воздуха; Г) макро- и микроорганизмы; Е) блуждающий электрический ток; Ж) разнородность металлов.


Company Logo Виды коррозии Коррозия Атмосферная Газовая Химическая Электрохимическая


Company Logo Атмосферная Атмосферная коррозия металлов происходит во влажном воздухе при обычной температуре


Company Logo Химическая коррозия Химическая коррозия – это химическое разрушение металлов под действием кислорода, сероводорода и других газов в отсутствие влаги


Company Logo Газовая коррозия Газовая коррозия разновидность химической коррозии, которой поддается арматура печей, детали двигателей, которые работают в условиях высоких температур.


Company Logo Электрохимическая коррозия Электрохимическая коррозия – это разрушение металла, который находится в контакте с другим металлом и электролитом или водой.


Company Logo Электрохимическая коррозия На поверхности любого металла конденсируется вода, в которой растворены атмосферные газы, то есть образуется электролит. Если металл содержит примеси или соприкасается с другим металлом, начинается электрохимическая коррозия. При этом первым разрушается более активный металл


Company Logo Последствия коррозии Ежегодно прямые потери от ржавчины из-за некачественной защиты аппаратуры, оборудования и конструкций составляют порядка 10% от всего объема металла, производимого в мире.


Company Logo Защита металлов от коррозии Защитные покрытия- нанесение защитных покрытий на поверхность металла Легирующие добавки- добавление хрома,никеля, титана,кобальта Ингибиторы- добавление катализаторов,замедляющих химические реакции Протекторная защита – создание контакта с более активным металлом


Company Logo Закрепление полученных знаний Что называется коррозией? Какие факторы её вызывают? Разрушение металлов и сплавов под действием различных внешних факторов. Влияние атмосферного воздуха, грунтовой влаги, агрессивных газов Агрессивная химическая среда Электролиты


Company Logo Закрепление полученных знаний Назовите виды коррозии. Назовите способы защиты металлов от коррозии Атмосферная, химическая, газовая и электрохимическая. Защитные покрытия, легирующие добавки, ингибиторы протекторная защита