Будет в самолет попадет птица. Птицы против «птиц»

Мы с вами уже говорили о том, что воздушное пространство не так уж и безбрежно, как кажется поначалу. Летают в нем не только аппараты, созданные человеком, но и живые существа, причем неизвестно, кто из этих объектов имеет больше прав на использование воздуха, птицы живые или птицы железные .

По крайней мере живые существа вла дели этим правом, можно сказать, от сотворения мира. А человек заявил о своем желании обладать небом совсем недавно, причем уже практически изначально считая себя в нем полным хозяином. Впрочем, как всегда и везде. Такая уж у него, у человека, натура:-).

Столкновения самолетов с птицами (в английском для этого существует термин bird strike ) начались практически тогда же, когда появились эти самые самолеты. А точнее будет все же сказать летательные аппараты. Потому что участниками происшествий с птицами могут стать любые объекты, хоть сколько-нибудь поднявшиеся над земной поверхностью, а иной раз даже над ней и не поднимавшиеся, например автомобили. Бывает и такое:-).

Одно из красноречивых фото на эту тему: Mercedes-Benz 300SL во время авторалли Carrera Panamericana еще в далеком 1952 году , когда на пологом повороте дороги машина ветровым стеклом врезалась в поднявшегося с обочины грифа, обеспокоенного шумом приближающегося автомобиля. Штурман тогда был ранен, но все обошлось.

Первое, зафиксированное документально столкновение самолета с птицами , имело место в 1905 году и произошло как раз с одним из первых в истории самолетов, коим был, как известно, летательный аппарат .

В их дневнике, в котором они записывали результаты полетов, тогда появилась запись Орвилла Райта о том, что во время пролета над кукурузным полем, он попал в стаю птиц, ударявшихся об элементы конструкции. Одна из них, врезавшись в верхнюю консоль, погибла и упала с нее при развороте.

В 1911 году французский пилот Eugene Gilbert на своем Bleriot XI во время перелета по вновь открываемому маршруту Париж-Мадрид над Пиренеями был атакован большой орлицей, защищавшей свое гнездо с птенцами, и сумел ее отогнать только выстрелами из пистолета. Весело ему было, наверное, кабина ведь там была абсолютно открытая:-).

Самолет Bleriot XI, 1910 год (реплика).

А первый трагический случай произошел в 1912 году 3 апреля над городом Лонг-Бич в Калифорнии. Американский пилот Calbraith Perry Rodgers , совершая демонстрационный полет, врезался в стаю птиц. У самолета заклинило управление, и он упал в воду вблизи побережья. Пилот погиб практически сразу.

Первая катастрофа в истории авиации из-за столкновения самолета с птицами.

Однако наибольшее количество жертв за всю историю авиации, связанное с крушением самолета из-за столкновения с птицами имело место 4 октября 1960 года . Самолет Lockheed L-188 Electra американской компании Eastern Air Lines при взлете из аэропорта Бостона влетел в стаю скворцов.

В результате этого были повреждены три его турбовинтовых двигателя из четырех. Самолет упал тут же в бостонской гавани. Из 72-ух человек, бывших на борту погибли 62.

Самолет Lockheed L-188 Electra компании Eastern Air Lines (аналог разбившегося).

По сравнению с проблемой в двигатель самолета, «птичья» проблема шире и специфичнее. Она может быть актуальной практически для любого летательного аппарата, от большого пассажирского , до легкого поршневого самолета или маленького вертолета.

Ведь, если камень с бетонки опасен, в основном, только для двигателя, и то, если он турбореактивный, то птица может создать неприятности практически для всего самолета. Если она попадает в ТРД (или его разновидности), то последствия (конечно зависящие от условий столкновения) очевидны и могут быть очень серьезными.

Повреждения лопаток компрессора турбореактивного двигателя из-за попадания птицы.

Повреждения лопаток компрессора ТВРД в результате попадания птицы в двигатель

Повреждения двигателя JT8D (Boeing-727 (737)). Причина все та же:-).

Однако, столкновения с птицами (bird strike ) других частей летательного апапрата тоже иной раз становятся не менее опасными. Даже незначительная вмятина на обшивке из-за длительного воздействия скоростного напора во время полета может привести к ее разрушению и дальнейшему повреждению находящихся под ней самолетных систем. Что уж говорить о таких случаях, когда птица пробивает обшивку.

Кроме того возможно повреждение остекления кабины с непредсказуемыми последствиями для пилота и систем управления. Достаточно незащищенными оказываются и стойки шасси, с различными коммуникациями пневмо- и гидросистем, которые часто на них располагаются.

Попадание птицы в коммуникации шасси.

Как пример можно привести происшествие с самолетом Boeing-737-400 компании KLM произошедшее 28 ноября 2004 года . При взлете с ВПП аэропорта Schiphol города Амстердама произошло столкновение птицы с передней стойкой шасси. Уборка шасси произошла нормально.

После посадки в аэропорту Барселоны самолет начало сильно уводить в левую сторону. С этим экипаж не смог справиться, несмотря на все применяемые средства. Самолет на скорости около 185 км/ч снесло с ВПП.

Авария Boeing-737-400 компании KLM.

По заключению экспертов при столкновении с птицей была перебита линия в системе управления разворотом передней стойки, что зафиксировало ее в повернутом положении и затруднило действия экипажа.

Не зря удар птицы весом 1,5- 2 кг об элементы конструкции самолета, летящего со скоростью около 700 км/ч сравнивают с выстрелом пушки калибром порядка 50 мм. При этом пушка совсем не оказывается в выигрыше:-). Небольшое и очень даже мягкое существо превращается в самый настоящий снаряд немалой разрушительной силы.

Энергия, выделяющаяся при ударе и так молниеносно ломающая казалось бы суперпрочные элементы конструкции летательного аппарата, есть кинетическая энергия движения птицы по отношению к самолету. Она достигает больших величин, и главная причина этого - скорость сближения.

Если бы самолет был неподвижен (и с неработающими двигателями), то птица, особенно небольших размеров, при всем старании не смогла бы причинить ему сколько-нибудь серьезные повреждения.

Если же она и летательный аппарат находятся, так сказать, на встречных курсах, то их скорости складываются, и хоть птица сама по себе (то есть относительно земли) летит совсем не так быстро (в среднем 60-70 км/ч, черный стриж – до 180 км/ч, и только сокол-сапсан в пике до 300 км/ч), ее скорость относительно самолета достигает впечатляющих величин.

А, исходя из формулы кинетической энергии, она еще и возводится в квадрат. Из этой формулы, K = mV 2 /2, видно, что хоть масса птицы тоже, конечно, влияет на силу удара, но все же первостатейное влияние оказывает скорость. Это скорость, при которой небольшая и, в общем-то, тихоходная птица превращается в разрушительный снаряд.

То же самое можно сказать, если эта птица попадает на вход в двигатель и встречается с вращающимися с огромной скоростью лопатками компрессора. Или же, если она попадает в плоскость вращения несущего винта вертолета и там «успешно» встречается с . Окружная скорость лопасти не настолько велика, как у рабочего колеса компрессора, но для получения роковых повреждений вполне хватит:-).

Хотя, конечно, подобного рода рекомендации трудноосуществимы на взлете. В этом плане наиболее уязвимы с их большими воздухозаборниками. И, если несчастный случай происходит именно с ними и именно на взлете, то у экипажа просто может не остаться времени для возвращения на аэродром вылета.

Характерен в этом плане достаточно известный случай с самолетом Airbus A320-214 авиакомпании US Airways(рейс 1549) вылетевшим 15 января 2009 года из аэропорта La Guardia (Нью-Йорк). Это случай назвали «Чудом на Гудзоне».

Чудо на Гудзоне. US Airways, рейс 1549.

Рейс 1459, этап спасения.

На третьей минуте после начала взлета самолет столкнулся со стаей канадских гусей . Оба двигателя были повреждены и остановились. Набранная высота составляла порядка 930 метров, и ее было недостаточно для разворота и посадки на аэродром взлета или близлежащие ВПП других аэродромов (в частности аэропорт Teterboro).

Канадский гусь.

Экипаж принял решение садиться на реку Гудзон . Для этого, используя оставшуюся высоту, развернули самолет, взлетавший на север, в южном направлении и, пролетев над мостом Джорджа Вашингтона (George Washington Bridge) на высоте менее 270 метров, осуществили благополучную посадку на воду.

Схема полета рейса 1549 US Airways.

Рейс 1459 сразу после приводнения.

Самолет остался на плаву. Все 155 человек (пассажиры и экипаж) находившиеся на борту были спасены.

Однако, если бы пострадал только один двигатель, то аварийная посадка произошла бы в более комфортных условиях на бетонную ВПП. Двух- и многодвигательный самолет при остановке половины двигателей может чувствовать себя в воздухе достаточно уверенно. Видео об этом ниже. Момент попадания птицы в движок показан в самом конце ролика на повторе. Птица выделена квадратом.

Птицы, к сожалению, очень часто квартируют (или просто с пользой проводят время:-)) именно возле летных полей. Причин к этому немало. Аэродромное поле обычно всегда имеет хороший травяной покров, который является бесперебойным поставщиком еды для птиц (семена и насекомые). Летом над нагретым бетонным покрытием ВПП пернатые ловят летающих насекомых.

Иной раз появлению птиц вблизи аэропортов способствует сам человек. Такие летные поля обычно располагаются на окраине города и нередко соседствуют с регулярными или же стихийными свалками мусора (аэропорт Шереметьево – тому пример). На таких свалках часто кормятся птицы, причем достаточно крупные, например вороны, голуби и чайки. А за ними подтягиваются хищные. И все эти перелеты «поближе к еде» осуществляются через летное поле.

Птицы и самолеты. Один из красноречивых примеров.

Еще один пример. Хорошо видно столкновение птиц с фюзеляжем.

В районе аэродрома вполне могут проходить пути миграций птиц. Они могут быть как сезонными, так и суточными (например, к местам кормежки).

Сезонные миграции связаны также с появлением молодого поколения, которое не отличаются опытом «общения» с железными птицами. Примечательно, что такой факт действительно существует. Старые и опытные особи иной раз ведут себя более осмотрительно (в том числе и в районе летных полей и ВПП) нежели недавно появившиеся на свет и не имеющие, так сказать, жизненного опыта.

Например, в районе аэропорта Домодедово по данным ГосНИИ гражданской Авиации расположена трасса сезонных (осенних и весенних) перелетов птиц. И именно поэтому в районе этого аэропорта зафиксированы столкновения с птицами на достаточно большой высоте (до 2,5 км) и даже ночью.

На практике же около 70% всех столкновений происходит на малой высоте (до 100 метров ), соответственно во время снижения и посадки и взлета и набора высоты.

В целом, высоты магистральных перелетов (эшелоны) самолетов гражданской авиации для птиц недоступны. По крайней мере так считается 🙂 и такова основная тенденция. Но стоит сказать, что в истории авиации зафиксированы случаи столкновения с птицами (правда еденичные) на высотах 6000 м и 9000м.

Гуси замечены летящими на высоте более 10175 метров . А однажды над территорией африканского государства Кот-д’Ивуар произошло столкновение самолета с грифом на высоте 11300 метров . Пока это известно как абсолютный рекорд высоты полета птиц.

И все же 90% всех происшествий с птицами (по данным ICAO) происходит при осуществлении полетов именно в районе аэродромов и в зонах на высотах до 1000 метров. Последнее во многом относится к военной авиации, особенно к истребительной, у которой, кстати, в большей степени от птиц страдают двигатели (видимо из-за небольшого относительного лобового размера планера).

Непосредственно в районе аэродромов по данным FAA (для США, Federal Aviation Administration) меньше 8% всех просшествий случается на высотах более 900 метров и более 61% приходится на высоты от 30 метров и менее.

Вертолет Sikorsky UH-60 после столкновения с серым журавлем.

Вертолет Sikorsky UH-60 Black Hawk после столкновения с серым журавлем.

Серый журавль.

Проблема столкновения с птицами летательных аппаратов, слава богу, не стоит в ряду первых, как причина летных происшествий, особенно с гибелью людей. Аварии и катастрофы по этой причине достаточно редкое явление.

Большинство столкновений (около 65% ) причиняет воздушному судну незначительный ущерб. Птица при этом практически всегда погибает. Достаточно серьезный ущерб, в том числе и с жертвами среди людей, возможен, в основном, при попадании птиц в остекление кабины и в двигатель.

Процентное соотношение количества попаданий птиц при столкновениях (материал с официального сайта ОГАО).

Что касается гибели людей, то подсчитано, что на одну человеческую жертву приходится на один миллиард летных часов. Цифры все же обнадеживающие, в некотором смысле. Однако, ведь, остается финансовая сторона. Современные летательные аппараты очень дорогое средство передвижения, и не менее дорого обходится их ремонт.

Кроме того, если гражданский самолет стоит на земле (для вынужденного ремонта после столкновения с птицей ), то компания, им владеющая, по большей части терпит убытки. Самолет должен летать для того, чтобы оправдывать вложенные в него средства.

Но если он на обманчиво бескрайних 🙂 воздушных просторах встретился с птицей, то без вынужденной стоянки чаще всего не обойтись. По некоторым оценкам международных экспертов ежегодные потери для мировой гражданской авиации из-за имеющих место bird strike составляют порядка 1,2 $млрд , причем 400 $ млн приходится на США.

Достаточно серьезные исследования в этой области начались в мире с 60-х годов. С 1965 года для изучения поведения птиц в районе летных полей и разработки мер по возможному предотвращению столкновения с ними летательных аппаратов существует специальная наука, называемая «Авиационная Орнитология» .

Мероприятия по снижению опасности столкновения с птицами строго регламентированы в авиационных организациях многих стран мира, в том числе и в ICAO . В некоторых странах, таких, например, как США, Канада, Германия, Италия, Великобритания действуют специальные национальные комитеты , занимающиеся проблемой bird strike .

Существует такой комитет и в мировом масштабе. Он называется International Bird Strike Committee (IBSC).

В России (бывшем СССР) такого рода исследовательские и практические работы начались с 1967 года. Термин «орнитологическое обеспечение безопасности полётов» (ООБП) прочно утвердился в авиационной практике еще с советских времен.

Справедливости ради стоит сказать, что больше это относится к гражданской авиации:-). На военных аэродромах такая проблематика никогда не стояла на первом месте. Да и в целом по стране авиационным орнитологам пришлось приложить немало усилий, чтобы высокое руководство осознало актуальность проблемы.

Это было на первых порах и сейчас до сих пор идет трудное восстановление после распада Союза. Достаточно сказать, что в 2003 году в ГосНИИГА орнитологическая тематика вообще попала под сокращение, как ненужная отрасль.

Национальный комитет у нас не создавался, однако сейчас его функции выполняет Отраслевая Группа Авиационной Орнитологии (ОГАО) . С 2003 года она входит в состав Государственного Центра Безопасности Полетов.

Специалисты этой группы проводят большую теоретическую и практическую работу. Они составляют многочисленные специфические рекомендации для летного и технического состава, выезжают в аэропорты для дежурства и отпугивания птиц , обучают персонал.

Процентное соотношение повреждений от столкновения с птицами (анимация с официального сайта ОГАО).

Кроме аналитической, методической и нормотворческой работы эта группа занимается разработкой и созданием средств предотвращения и защиты от столкновения самолетов с птицами.

Например, еще в советское время была создана мобильная биоакустическая установка «Беркут» , воспроизводящая определенные отпугивающие птиц звуки. Ею тогда было оборудовано 35 аэропортов. Последняя разработка в этой области – электронное биоакустическое оборудование новейшего поколения «Универсал-Акустик» .

Установка "Универсал-Акустик" на аэродроме.

В этой системе используются записи природных криков и сигналов «бедствия и тревоги»достаточно многих видов птиц, а также звуки выстрелов, различные синтезированные сигналы. Звуковая информация подобрана так, чтобы максимально исключить возможность привыкания птиц. Она имеет возможность постоянно обновляться с использованием интернет-технологий.

Пиротехническое средство "Халзан".

Известно также специализированное пиротехническое средство «Халзан» . Его запуск сопровождается звуковым эффектом с оставлением оранжевого следа и чем-то наподобие фейерверка на конечном участке траектории. Уровень шума в этом случае до 160 дБ . Оказывает на птиц сильное воздействие, однако, как и вся пиротехника требует соблюдения специальных правил применения (с чем и возникли определенные проблемы, особенно в Российских аэропортах).

В советское время в конце 80-х совместно с Рижским Институтом инженеров Гражданской авиации (РКИИГА ) была разработана специальная радиоуправляемая модель, по форме выполненная в виде хищной птицы. Она по замыслу авторов должна была распугивать птиц живых. Работы оказались довольно успешными, но по различным причинам продолжения не получили (у нас).

Радиоуправляемая модель для отпугивания птиц (РКИИГА, 80-е).

Однако натуральные пернатые хищники в некоторых аэропортах для этой цели достаточно широко используются. Их главная задача, конечно, не переловить всю живность над аэродромом:-), а испугать их своим присутствием. Например, до недавнего времени в Домодедово содержали с этой целью 12 ястребов-тетеревятников .

Используют также с в других аэропортах специально обученных соколов разных пород. Например, в Америке в аэропорту им. Джона Кенеди или в Манчестере, в Великобритании, в Антверпене, в южных аэропортах бывшего Союза (Ташкент, Бишкек и др.), Пулково и некоторых других.

Среди «одушевленных средств» 🙂 для отпугивания птиц за рубежом также достаточно широко используются обученные собаки, в частности бордер-колли . Например, по данным для одной из военно-воздушных баз США (Dover, штат Delaware) после двухлетнего претворения в жизнь программы с использованием этих собак, ежегодные затраты на ремонт авиационной техники после столкновения с птицами (bird strike ) упали с 600000 $/ год до 24000$/год.

Вообще в мире используется немалое количество технических средств для отпугивания птиц от аэродромов. Это уже упоминавшиеся акустические (специфические тревожные крики, ультразвук) и пиротехнические средства.

Спецмашина орнитологического контроля в аэропорту.

Модель сокола, механический робот, используемый в аэропорту Амстердама.

Используются различные пассивные и механические чучела (в том числе приводимые в движение ветром), зеркальные отражатели для создания бликов, ленты и т.д., различные лазерные и ультразвуковые излучатели.

Газовая пушка.

Кроме того применяются специальные пропановые пушки со звуковой мощностью выстрела до 150 дБ . В воздух запускаются воздушные змеи, шары и аэростаты с «неприятными» 🙂 для птиц изображениями.

Пример отпугивающей раскраски воздушных шаров.Отпугивающий рисунок на воздушном шаре.

Отпугивающий рисунок на воздушном шаре.

В аэропортах Новой Зеландии нашли применение специальное электрифицированное покрытие вдоль кромки ВПП. Это мера значительно уменьшает количестов земляных червей в верхнем слое земли, тем самым уменьшая количество птиц, охотящихся за ними.

В конце концов применяется и такой метод, как отстрел птиц и разбрасывние тушек по полю (варварский способ, но достаточно действенный…).

Как видите, мер для отпугивания птиц от летных полей существует предостаточно. Их использование, особенно в комплексе и с правильным расчетом несомненно оказывает очень ощутимый положительный эффект. Однако, абсолютно радикальных мер аэродромного орнитологического обеспечения не существует.

Где-то они не очень действенны, где-то птицы к ним привыкают, а где-то их попросту нет. Поэтому существуют различные технические и технологичнские меры применительно к авиационной технике.

В основном эти меры касаются защиты двигателей, как самого уязвимого узла. О них я уже упоминал ранее в , ведь птица для двигателя как раз и есть хоть и специфический, но посторонний предмет:-).

Это упрочнение и определенное профилирование лопаток и входного тракта компрессора (более применимо для ), использование специальных защитных панелей и сеток, сепараторных устройств, устройств струйной воздушной и водяной защиты.

Помимо этого двигатели и планер самолетов коммерческой гражданской авиации подвергаются специальным динамическим испытаниям . Здесь вполне удобен такой несколько искусственный термин как «птицестойкость» :-). Суть этих испытаний в том, что самолет или двигатель попросту обстреливают тушками птиц.

Выстрелы производятся в переднююю часть фюзеляжа (в частности козырек кабины, передний гермошпангоут), передние кромки хвостового оперения и передние кромки крыла (предкрылки).

Кроме того, конечно, проверяется остекление. Само по себе стекло уже практически всегда проверено изготовителем, поэтому больше внимания уделяется местам стыковки и окантовки, а также местам установки форточек.

Мощность пушки подобрана так, чтобы имитировать максимальные скорости столкновения, а в качестве тушек используют обыкновенную курицу (она должна быть что называется «свежеубитой»:-)). Повреждения, получаемые при этом испытании техническими агрегатами, должны быть не меньше определенного уровня. Любой, вновь создаваемый самолет в настоящее время проходит такого рода проверку, без которой его международная эксплуатация невозможна.

Как пример, небольшой ролик испытаний носовой части самолета АН-72. Здесь вес курицы 2 кг, а скорость выстрела – 540 км/ч, что соответствует одному из режимов полета этого самолета.

В среднем современный самолет на близкой к крейсерской полетной скорости должен выдерживать без рокового вреда для конструкции и систем удар птицы весом 1,8 кг для носовой части и остекления кабины и 3,6 кг для крыла и хвостового оперения.

Что касается двигателя, то для него не ставится задача непременно оставаться в рабочем состоянии после столкновения с птицей (хотя и в этом направлении работы тоже ведутся). В этой ситуации более важна его остановка без опасности разрушения с повреждением салона с пассажирами и систем самолета (особенно если эти системы важны для осуществления аварийной посадки самолета).

Двигатели тоже подвергаются испытаниям. Ниже два небольших видеоролика на эту тему. В первом показаны в том числе и испытания с помощью пневмопушек. А второй об исследовании результата обрыва лопатки компрессора.

В последнее время кроме физических «пушечных» испытаний конструкций летательных аппаратов проводится так же более спокойное и менее затратное компьютерное моделирование столкновений с птицами .

Вот такая, в общих чертах, обстановка на арене борьбы птиц железных против птиц живых:-). Насчет арены и борьбы – это все же, пожалуй, преувеличение. Но определенное противостояние существует. Люди, слава богу, осознают, что прямой отстрел и уничтожение – это не метод. Ведь не птицы виноваты в создавшемся положении, а человек хоть и венец природы, но совсем не ее хозяин:-).

Новая специализированная корейская разработка для отпугивания птиц.

Исследования и работы по исправлению создавшегося положения ведутся непрерывно и очень интересно было бы застать тот момент в нашей жизни, когда все «птицы» в небе будут летать свободно и не боясь друг друга:-)…

P.S. В конце все же решил, однако, добавить пару занимательных примеров. Статья посвящена птицам, но ведь не зря в ее начале я использовал слова «живые существа». Есть еще одна неисчислимая армия летающих, которые иной раз могут стать конкурентами нашим железным птицам. Это летающие насекомые .

Началось все как всегда с самого начала. Еще в 1911 году пилот Henry Harley “Hap” Arnold (ставший в последствии ветераном ВВС США) летавший на своем Wright Model B (конструкции все тех же братьев Райт) без очков чуть не разбился вместе со своим аппаратом. Все из-за того, что ему в глаз во время полета попал какой-то жучок, и он от этого практически утратил контроль над самолетом. Однако все завершилось благополучно.

Аэроплан Wright Model B на выставке в Фарнборо.

В наши дни довольно серьезную опасность экипажам самолетов могут доставлять стаи саранчи. Они могут подниматься на высоты до 900 с лишним метров и содержать в себе более 50 миллионов особей.

В конце лета 1986 года бомбардировщик американских ВВС Boeing B-52G Stratofortress при выполнении тренировочного задания в штате Монтана на высоте порядка 130 м попал в огромное облако саранчи. Лобовые стекла кабины мгновенно покрылись бурой непрозрачной массой, с которой не справлялись дворники, и которая к тому же начала быстро подсыхать. Видимость через лобовое стекло стала нулевой.

Boeing B-52G Stratofortress.

Все усилия, направленные на исправление возникших проблем, в том числе и попытки вручную почистить стекло через форточку успехом не увенчались. Дальнейший полет и посадку производили по приборам и с использование боковых окон остекления кабины.

Все закончилось благополучно, но могли ведь и двигатели пострадать. Такое огромное количество органики (хоть и относительно мягкой:-)) за раз они могли бы и «не переработать». Кроме того есть немалая опасность и для приемников воздушного давления, чьи рабочие отверстия легко могут оказаться забитыми.

В связи с возможностью такого рода происшествий CASA (Civil Aviation Safety Authority) , главная управляющая организация гражданской авиации Австралии, то есть страны, где саранча чувствует себя достаточно вольготно, в специальных рекомендациях в 2010 году предупредила своих пилотов о недопустимости прямого контакта со стаями саранчи из-за прямой угрозы безопасности полетов.

Вот такие дела. Есть о чем подумать:-)…

До новых встреч. Спасибо, что дочитали статью до конца:-)…

Фотографии кликабельны .

Что происходит, когда птица сталкивается с самолетом? aslan wrote in October 11th, 2017

В боулинге страйк - это лучший удар, который вы можете сделать. В авиационном жаргоне, впрочем, страйк происходит, когда птица внезапно пересекает траекторию самолета. Обычно с предсказуемым исходом для птицы. Птицы и самолеты сталкиваются не так уж редко. Не так давно самолет японских авиалиний был вынужден совершить экстренную посадку в Нью-Йорке, потому что птица ударила в самолет; другой самолет был вынужден вернуться в аэропорт Кардиффа в Уэльсе после того, как птица попала в двигатель.


В 2016 году было зарегистрировано 1835 подтвержденных попаданий птиц в одной только Великобритании - восемь случаев на каждые 10 000 перелетов. Для авиалиний это серьезное событие: самолеты, в которые попали птицы, нужно тщательно исследовать на предмет незаметных повреждений, которые могут быть опасны, если их не найти.

Лишь порядка 5% попаданий птиц приводят к повреждению самолетов. Но из-за предосторожности все ударенные самолеты возвращаются в ближайший аэропорт, а пассажиры пересаживаются на другой рейс с другим экипажем. Все это сказывается на операциях аэропорта. Определить косвенные затраты также нелегко. По оценкам, для Северной Америки это выливается в 500 миллионов долларов, пишет The Conversation.

Птицы не летают высоко. Исследование от 2006 года показало, что три четверти столкновений с птицами происходят ниже 150 метров, когда самолет только взлетает либо идет на посадку. Скорость самолета в этот момент ниже, чем на высоте, а быстрые маневры уклонения осуществить трудно. Исход по большей части зависит от того, в какую часть самолета бьется птица. Самолеты строят так, чтобы те противостояли мощным силам, поэтому, хоть инженеры и беспокоятся, особо переживать не о чем.

Двигатели самолетов, например, создаются очень надежными. Критерии сертификации включают правило, согласно которому крупные двигатели должны выдерживать столкновение с птицей весом более 3,5 кг без опасного и быстрого выброса острых осколков из двигателей. Фактически большинство двигателей могут проглотить птицу и лишь немного повредить лопасти.

Двойное попадание птицы в двигатель чрезвычайно маловероятно (хотя и случалось), но если один двигатель выйдет из строя по причине птичьего попадания, это будет не критично. Все самолеты справляются с выходом одного двигателя из строя. Большинство из них могут преодолеть океан на одном двигателе.

Однако не только двигатели подвергаются риску при попадании птиц. Окна в кабине пилотов тоже могут разбиться. Но делают их из трех слоев ламинированного акрила и стекла, спроектированных так, чтобы выдерживать град в сердце бури, поэтому птицы не представляют для них проблему. Наличие множества слоев также обеспечивает герметичность самолета даже в случае повреждения внешних слоев. Также пилотов обучают включать нагрев стекла, чтобы лед не намерзал на высоте, перед взлетом; так стекла становятся мягче и более устойчивыми к ударам.

Чтобы птицы не пострадали от такой страшной судьбы, аэропорты также предпринимают различные меры, чтобы помешать им даже приблизиться к самолетам. Используются записи звуков хищных птиц, патроны, производящие громкий шум и вспышки света, механические соколы, обученные соколы и беспилотники. Эти меры работают в краткосрочной перспективе, но считается, что птицы быстро к ним привыкают. Кроме того, птицам нравятся аэропорты. Большие, зеленые, пустые районы, окруженные деревьями и бункерами, очень привлекают дикую природу.

Довольно часто возникает предположение, что двигатели должны быть защищены решеткой, но это не так просто сделать. Проблема в том, что для того, чтобы эффективно заблокировать птицу на скорости 800 километров в час, сетка должна быть весьма прочной и толстой, но это помешает току воздуха в двигатель. Двигатели эффективны, потому что тщательно спроектированы, чтобы задействовать тончайший воздух на высоте, поэтому минусы защитной решетки перевешивают плюсы.

Поскольку коммерческие беспилотники становятся все более распространенными, индустрия призывает к системам, которые будут сообщать пилотам, насколько серьезный удар, чтобы они могли продолжать лететь, если повреждений нет. Исследователи из Кардиффа и имперских университетов Великобритании, а также со всего мира работают над различными датчиками и материалами, которые смогут самостоятельно оценивать здоровье самолета и устранят необходимость прерывать полет.

Идея заключается в том, чтобы разработать маломощную, легковесную, беспроводную систему, которая может определить место и силу повреждений. На сертификацию такой системы может потребоваться больше десятилетия, но в конечном итоге пилоты смогут получить информацию о возможности безопасного продолжения полета после удара. Если им нужно будет приземлиться, техники будут знать, куда смотреть, а запасные части уже будут наготове.

А пока - предупреждение, конструкция и тщательное обучение пилотов будут оставаться нашей единственной защитой против попаданий птиц.

Привет, Ёжин.ру!
Я, будучи действующим пилотом западной, а до этого и российской Авиакомпании, продолжаю вас посвящать в тонкости авиации.

Ответы на вопросы!

А как на счет молнии, если она попадет в самолет?

Даже если молния попала в самолет-ее расправляют стекатели статического электричества-это такие жгуты на крыльях и хвосте.
В салон конечно же молния не проходит.После попадания молнии в самолет на земле производят осмотр на наличие незначительных
механических повреждений.

Как часты случаи пилотирования в состоянии алкогольного опьянения?

Не переживайте! Перед каждым рейсом экипаж проходит медицинское обследование. Если у врача закрадутся подозрения, он вправе не допустить одного из членов экипажа к полету. Все что вы можете увидеть или услышать в СМИ-ерунда «писак».

А что случится, если в турбину самолета попадет птица?

Ситуации такие случались, особенно часто еще на стадии развития авиации. Для самолетов птица-враг №1, т.к. попадание птицы в двигатель самолета неизбежно приведет к выходу из строя двигателя, а может даже и пожару. Но тут тоже не стоит переживать, умные люди эту проблему решили! Как? На каждом аэродроме в обязательном порядке стоит спец.оборудование для отпугивания птиц.

Какие? Да самые разные: пугала, воздушные змеи, газовые пушки, но в основном аэродромы пользуются ультразвкуковыми отпугивателями.

В крупных аэропортах этим занимается специальная служба.

Вы можете наблюдать как на взлете/посадке самолет выпускает и включает фары. Зачем? А вот как раз что бы отпугивать птиц, как бы это не было банально.

Слёзно прошу и умоляю написать о правилах пользования электроприборами на борту самолёта…

Пользоваться на борту можно любым электронным оборудованием, незапрешенными для проноса на борт. Другое дело что пользоваться ими нельзя во время взлета и посадки. Почему? Потому что в случае непредвиденной ситуации на этих этапах, любой незакрепленный и неубранный предмет на багажную полку, автоматически становится угрозой здоровью пассажира. Так же заставляют выключать все электронное оборудование, якобы они создают помехи навигационному
безопасности полетом, вы ОБЯЗАНЫ выключить приборы на этапах взлета и посадки. Это просто мера предосторожности.

Ну во-первых всем известно что полет проходит на скорости, близкой к 500 км/ч и на высоте 10-12 км. Дышать на такой высоте нечем-это раз, температура за бортом на такой высоте — 50-два, а значит нам потребуется спец.одежда утепленная, шлемы и кислородные маски. Раздать все это пассажирам перед полетом проблем нет, а вот в суматохе и панике все это на себя одеть возможности не представляется. Для безопасных прыжков с парашютом нужны определённые знания и навыки, которых у пассажиров нет, а перед полетом за 20 минут научить их этому невозможно.

Для того что бы осуществить выброс пассажиров из лайнера, нужны спец. люки и двери, у которых пропускная способность будет выбрасывать 100-200 пассажиров за 10-20 секунд, на пассажирских лайнерах этого нет.

Прецедент к катастрофе происходит на больших высотах и то, что самолет точно разобьется становится известно уже за несколько секунд до столкновения с землей. Т.о. можно понять, что использование парашютов в пассажирских авиалайнерах малоэффективно и травмоопасно. Половина пассажиров погибнет выпрыгнув с парашютом, а вдруг катастрофы получится избежать. Как в примере с Ту-154 в Ижме. Представляете-пассажиры попрыгали как попало с самолета, половина погибла, а самолет взял и благополучно сел.

Почему самолёты летают высоко? В связи с чем это необходимо?

Ответ: На большой высоте большое разрежение воздуха, плотность меньше, сопротивление меньше, значит скорость больше и больше экономия топлива.

А можешь про «лазерохулиганов» с земли рассказать, мешают ли они пилотам?

Конечно нет, это СМИ любит раздувать. Что бы помешать пилоту в глаз этим лазером. С земли еще нужно умудриться попасть лазером в кабину самолету, который садится или взлетает, мало того нужно еще и в глаз попасть. Это не возможно:)

Вот меня интересует вопрос, питание в самолетах всюду одинаковое или как? Вот летом кормили более менее сносно. Давали кусочки колбасы, огуречек и помидорку. Сейчас же на рейсах вообще дают одно масло и булочку с сыром. Это авиа компания экономит или такой рацион у всех?

Чем кормить своих пассажиров решает авиакомпания, все готовится в аэропорту, заказ на питание подает авиакомпания. Если на борту кормят плохо, то это вина авиакомпании-экономят!

Зачем при взлете и посадке открывать шторку на иллюминаторе?

Это необходимо по нескольким причинам: во-первых в аварийной ситуации пластиковая шторка может расколоться и нанести увечья, во-вторых в случае аварийной ситуации бортпроводники должны оценить ситуацию за бортом и третье-в случае аварийной ситуации спасательные службы должны видеть что происходит в салоне.

У меня вот такой вопрос, я всегда любила самолеты я хочу стать пилотом (голубая мечта), но я девушка, и родители говорят, что сложно пробиться девушкам в пилоты, так ли это? Да и вообще хотелось бы знать «+» и «-» работы пилотом от человека давно работающего пилотом, т.е. уже опытного и много знающего))

Выучиться на пилота для девушки-нет никаких проблем, я знаю девушек, которые летают вторым пилотом, правда знаю только в западных авиакомпаниях. Девушкам чаще труднее учиться, т.к. есть такие тяжелые дисциплины, как конструкция самолета, аэродинамика и тд. Если вы сдадите все экзамены и всё освоите, то никаких проблем нет. Для тех, кто любит и бредит авиацией минусов нет!:) Даже по одним и тем же маршрутам летать приятно и интересно. Хотя мы летаем не по одному и тому же, летаем по маршрутам которые есть у авиакомпании.

Слушай, а до какой скорости разгоняется самолет для взлета?

Ну у разных самолетов разная скорость отрыва и еще это зависит от взлетной массы самолета. Ну на 737 боинге в среднем 220 км/ч, на 747-270км/ч, на Як-40-180 км/ч, Ан-2-90 км/ч 🙂

Почему иллюминаторы в самолетах овальные?

У квадрата 4 угла-это слабые места. Если надавить на квадратную конструкцию, то трещины пойду именно из углов. По-этому овальные и круглы иллюминаторы-конструктивно безопаснее и надежнее квадратных.

Двойное попадание птицы в двигатель чрезвычайно маловероятно (хотя и случалось), но если один двигатель выйдет из строя по причине птичьего попадания, это будет не критично. Все самолеты справляются с выходом одного двигателя из строя. Большинство из них могут преодолеть океан на одном двигателе.

Однако не только двигатели подвергаются риску при попадании птиц. Окна в кабине пилотов тоже могут разбиться. Но делают их из трех слоев ламинированного акрила и стекла, спроектированных так, чтобы выдерживать град в сердце бури, поэтому птицы не представляют для них проблему. Наличие множества слоев также обеспечивает герметичность самолета даже в случае повреждения внешних слоев. Также пилотов обучают включать нагрев стекла, чтобы лед не намерзал на высоте, перед взлетом; так стекла становятся мягче и более устойчивыми к ударам.

Предотвращение и обнаружение

Чтобы птицы не пострадали от такой страшной судьбы, аэропорты также предпринимают различные меры, чтобы помешать им даже приблизиться к самолетам. Используются записи звуков хищных птиц, патроны, производящие громкий шум и вспышки света, механические соколы, обученные соколы и беспилотники. Эти меры работают в краткосрочной перспективе, но считается, что птицы быстро к ним привыкают. Кроме того, птицам нравятся аэропорты. Большие, зеленые, пустые районы, окруженные деревьями и бункерами, очень привлекают дикую природу.

Довольно часто возникает предположение, что двигатели должны быть защищены решеткой, но это не так просто сделать. Проблема в том, что для того, чтобы эффективно заблокировать птицу на скорости 800 километров в час, сетка должна быть весьма прочной и толстой, но это помешает току воздуха в двигатель. Двигатели эффективны, потому что тщательно спроектированы, чтобы задействовать тончайший воздух на высоте, поэтому минусы защитной решетки перевешивают плюсы.

Поскольку коммерческие беспилотники становятся все более распространенными, индустрия призывает к системам, которые будут сообщать пилотам, насколько серьезный удар, чтобы они могли продолжать лететь, если повреждений нет. Исследователи из Кардиффа и имперских университетов Великобритании, а также со всего мира работают над различными датчиками и материалами, которые смогут самостоятельно оценивать здоровье самолета и устранят необходимость прерывать полет.

Идея заключается в том, чтобы разработать маломощную, легковесную, беспроводную систему, которая может определить место и силу повреждений. На сертификацию такой системы может потребоваться больше десятилетия, но в конечном итоге пилоты смогут получить информацию о возможности безопасного продолжения полета после удара. Если им нужно будет приземлиться, техники будут знать, куда смотреть, а запасные части уже будут наготове.

А пока – предупреждение, конструкция и тщательное обучение пилотов будут оставаться нашей единственной защитой против попаданий птиц.

17.08.2019, 09:29 18623

Согласно данным Международной организации гражданской авиации, каждый год случается 5 500 столкновений птиц с самолетами - бедные пернатые «камикадзе». Может им просто не нравится делить небо с крылатыми железными монстрами и они проверяют их на прочность. Но что происходит на самом деле? Может ли птица быть причиной авиакатастрофы? Как защищены самолеты от подобных случаев? Обо всем этом Билетик Аэро расскажет вам.

Немного статистики. Чаще всего аварии случаются при взлете или посадке. Логично, поскольку птицы держатся подальше от открытого космоса, они летают под облаками. 75% аварий в воздухе происходит на высоте до 300 м, 20% - на высоте от 300 до 1500 и только 5% - выше 1 500 километров. Кроме того, птицы не всегда сталкиваются с кабиной самолета, и это происходит лишь в 12% случаев, в 45% случаев из них они попадают в двигатель.

Конечно же, во время разработки двигателя конструкторы учитывали возможность столкновения, но дело в том, что даже наилучшие двигатели в этом случае останавливается.

Самая известная история с пернатым произошла в 2009 году в Северной Америке. Самолет авиакомпании «US Airways» вылетел из аэропорта в Нью-Йорке «Ла-Гардиа» и столкнулся со стаей птиц. В результате оба двигателя заглохли. Пилот Чесли Салленбергер мгновенно принял единственное верное решение и совершил посадку на воду реки Гудзон. Посадка прошла блестяще - все 155 людей на борту остались живы. В подобной ситуации многие бы запаниковали, но этот человек оказался настоящим героем.

Теоретически двигатели должны были выдержать столкновение с птицей весом до 2 кг, так что пора ворон, чайка или даже курица - не представляли угрозы. Но по одной из версий, самолет столкнулся со стаей диких гусей, каждый из которых весит около 4-х кг. Сейчас многие из вас подумали: «А почему бы просто не поставить защитный экран перед двигателями». Ответ заключается в том, что это просто невозможно. Экран не дает воздуху проникать в двигатели и он должен быть очень прочным потому что в него попадет не только животное, но и куски металла. Расчеты таковы: если самолет на скорости 320 км/ч столкнется с чайкой, то сила удара составит около 3 200 кг на квадратный сантиметр. А если таже птица и самолет столкнулся на 2 км выше на скорости 690 км/ч - удар будет в 3 раза мощнее, чем выстрел 30 миллиметрового снаряда.

Очень опасно, когда птица ударяется об обтекатель. Такой случай произошел в 2004 году, когда реактивный пассажирский самолет совершил вынужденную посадку в Мумбаи. Сойдя с самолета, пассажиры увидели полутораметровую вмятину под кабиной и трещины по всему «носу».

Говоря о современных технологиях, вот что мы имеем - если птица попадает в двигатель, то ваши шансы 50 на 50. Если птица небольшая, то бояться нечего, но если большая, то может произойдет срыв в компрессоре. Он происходит, когда нарушается поток воздуха сквозь двигатель - это может закончиться отрывом лопаток от компрессоров, пожаром или взрывом двигателя. Другой - турбовинтовой двигатель, обладает достаточной прочностью, чтобы выдерживать столкновение с птицей, но с маленькой. И все равно возможен выход двигателя из строя. Хоть птица не закупоривает двигатель, из-за нее могут погнуться или оторваться лопасти, и двигатель перестанет работать.

Несмотря на все сказанное, нет нужды паниковать и отказываться от самолета. Конструкторами предусмотрели все-возможное, и если один двигатель перестает работать самолет сможет долететь до ближайшего места посадки, используя оставшиеся двигатели. О том, как далеко может улететь самолет, если оба двигателя вышли из строя . Вероятность поломки всех двигателей сразу почти равна нулю. Кроме того, все аэропорты используют систему отпугивания пернатых гостей: биоакустические установки воспроизводящие звуки, которых боятся птицы, безвредная, но очень шумная пиротехника, а самые «модники» выпускают соколов и ястребов. На взлете и посадке самолет выпускает и включает фары. Зачем? А вот как раз чтобы отпугивать птиц, как бы это не было банально.

Мы желаем вам безопасных полетов и надеемся, что самой большой неприятностью в самолете будут пассажиры с плачущими детьми, а не птички суицидники. Хотя кто знает, что хуже?